Ensuring performance
The main prerequisites for charging electrically powered vehicles are safety, reliability, short charging times and ease of operation. Volvo Opportunity Charging System delivers on all these criteria, thus ensuring uptime and energy efficiency.

What is opportunity charging?
Virtually all buses have a couple of minutes rest at the end stations of their routes. We make use of this time and charge the battery of the Electric or Electric Hybrid driveline, hence the name Opportunity Charging. Due to an advanced control system this charging takes only up to six minutes to complete and your uptime is left undisturbed.

Simple and safe system structure
The charging station has a minimal impact on the bus stop. All control devices and electronics are gathered in a heavy-duty cabinet, placed in a suitable housing. Underground cabling connects it to the pylon where the charging contact device, the pantograph, is mounted.

Automated charging sequence
Charging starts automatically after the bus has stopped in the right position at the charging station, and after the driver has applied handbrake. The charging interface reaches the bus from above, which is optimal in terms of safety. All moving parts are integrated in the pylon, while the contacts on the bus are fixed mounted. This minimises the need for additional maintenance on the vehicle.

Open architecture
Open architecture means simple adaptations and freedom in choosing supplier/manufacturer of electrical equipment. Volvo cooperates with several leading suppliers of equipment for electrical power distribution in order to ensure smooth integration in the city’s infrastructure.
VOLVO OPPORTUNITY CHARGING SYSTEM
For Electric and Electric Hybrid buses

Specifications

<table>
<thead>
<tr>
<th>Overall dimensions</th>
<th>Typical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total height of charging carrier (m)</td>
<td>5.3</td>
</tr>
<tr>
<td>Free height under charging interface in stowed position (m)</td>
<td>4.6</td>
</tr>
<tr>
<td>Height of charging interface during charging (m)</td>
<td>3.0–3.2</td>
</tr>
<tr>
<td>Height of power charger (m)</td>
<td>2.3</td>
</tr>
<tr>
<td>Width of power charger (m)</td>
<td>3.8</td>
</tr>
<tr>
<td>Depth of power charger (m)</td>
<td>2.3</td>
</tr>
<tr>
<td>Distance between charger and charging pylon (m)</td>
<td>0–30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input voltage (VAC)</th>
<th>Refer to IEC 60038: IEC standard voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (Hz)</td>
<td>50/60 ±2</td>
</tr>
<tr>
<td>Total Harmonic Distortion, THD (%)</td>
<td><8</td>
</tr>
<tr>
<td>Maximum Charging Power Level for Electric Hybrid (kW)</td>
<td>150</td>
</tr>
<tr>
<td>Maximum Charging Power Level for Electric (kW)</td>
<td>300</td>
</tr>
<tr>
<td>Output DC voltage (VDC)</td>
<td>500–750</td>
</tr>
<tr>
<td>Max output current at 750 VDC (A)</td>
<td>200–400</td>
</tr>
<tr>
<td>Ambient temperature (°C)</td>
<td>-25 – +55</td>
</tr>
</tbody>
</table>

Charging station for rapid charge
- Opportunity charging
- Open standard
- Connecting interface to power grid
- Connecting interface to vehicle
- Power charger (converter)
- Earth continuity check
- Isolation resistance monitoring
- Spring loaded pantograph (raise up if power is lost)
- Charger station communications and control
- Control for vehicle interface connection
- Protective housing
- Weatherproof
- Perimeter protection according to applicable regulations
- Pylon

Automatic charging
- The driver stops the bus in the correct position for charging
- Fully automatic connection
- Fully automatic start of charging
- Fully automatic end of charging either at full charge or when vehicle needs to leave
- Charging can be interrupted by the driver if needed

Communication with vehicle
- Vehicle sets the requested charging parameters for the charging station
- Communication via WiFi
- Design reference: ISO 15118-1 and IEC 61851
- Connecting is done automatically

Safety
- Embarking and disembarking of vehicle is possible during the charging process
- Emergency stop
 - Stop signal from vehicle or signal device

Performance
- Typical charging duration 6 min/bus
- Duty cycle continuous
- Incremental charge current steps available
- Can withstand short circuit current for a limited time
- Supply to the auxiliary electrical loads on the bus is provided as long as the charging interface is connected

Volvo Bus Corporation
Göteborg, Sweden
www.volvobuses.com